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Abstract

A Lagrangian Stochastic Model for the two-particles dispersion, aiming at simulating
the pollutant concentration fluctuations, is presented. Three model versions (1-D, 2-
D and 3-D) are tested. Firstly the ability of the model to reproduce the two-particle
statistics in a homogeneous isotropic turbulence is discussed, comparing the model5

results with theoretical predictions in terms of the probability density function (PDF)
of the particles separation and its statistics. Then, the mean concentration and its
fluctuations are considered and the results presented. The influence of the PDF of
the particle separation on the concentration fluctuations is shown and discussed. We
found that the separation PDF in the inertial subrange is not gaussian and this fact10

influences the predicted concentration fluctuations.

1. Introduction

Lagrangian Stochastic Models (LSM) are based on the Langevin equation, which al-
lows describing the temporal evolution of the velocity of pollutant particles in a turbulent
field. The solution of the Langevin equation is a continuous stochastic Markov process.15

In fact, particle position and velocity, in a turbulent flow, can be considered a bivariate
Markov process in the range of the spectrum between the Kolmogorov time scale and
the velocity correlation Lagrangian time scale TL.

Thomson (1987) provides a complete theory of the LSM based on the concept of
the Markovian process. In that paper he introduced the so called “well mixed condi-20

tion” as a basic constraint in order to assess the validity and physical consistency of a
dispersion model. He also demonstrated that this condition is satisfied by his model.

Many numerical models have been developed based on this fundamental work aim-
ing to simulate the dispersion of pollutants in the atmospheric boundary layer in differ-
ent stability conditions (see for instance Luhar and Britter, 1989; Hurley and Physick,25

1991; Ferrero et al., 1994; Du et al., 1994). These models are able to account for
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higher order turbulence moments of the atmospheric PDF and complex turbulence
flow dynamics (Ferrero et al., 2003), and have demonstrated to be able to accurately
reproduce the mean concentration field of the dispersed tracer.

It should be stressed that the one-particle model is only able to describe the absolute
dispersion and to predict the mean concentration fields. When one is interested in the5

relative dispersion and fluctuation concentration field, a two-particle model should be
developed and applied.

Many authors attempt to extend the results obtained with the single particle disper-
sion models to those for the particle pairs suggesting heuristic models (Durbin, 1980;
Sawford, 1984; Kaplan and Dinar, 1989). However, more recently, Thomson (1990)10

and Borgas and Sawford (1994) following a more rigorous approach, based on the
stochastic processes theory, prescribed a complete three dimensional model for two-
particles dispersion in homogeneous isotropic turbulence.

An important advantage of the two–particle model is the ability to include second
order chemical reactions (Crone et al., 1999; van Dop, 2001). Unfortunately a unique15

solution of the Fokker-Planck equation does not exist for the two-particle model, even
in one dimension and in isotropic turbulence (Sawford, 1993).

A two-particles LSM for relative dispersion in homogeneous and isotropic turbulence
is presented. In particular, the behavior of the separation and barycentre of the par-
ticles positions generated by the model are analysed and compared with the Taylor20

(1921) theory for the Lagrangian dispersion and its extension to the relative dispersion
(Lee and Stone, 1983; Borgas and Sawford, 1994). The form of the separation PDF’s
is also investigated and compared with the classical theory (Richardson, 1926). Fi-
nally the mean concentration and the concentration fluctuations predicted by the 1-D,
2-D and 3-D versions of the model are compared with those predicted by analytical25

formulas assuming different PDFs and experimental data.
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2. The model

In order to obtain a model for particle pairs, the Eulerian PDF should depend on the par-
ticle relative separation (∆). The simplest choice is to assume PE (∆, u) to be Gaussian,
depending on a six–dimensional velocity covariance tensor. The PDF is completely
determined if all the components are known. These components are determined, in5

homogeneous isotropic turbulence, following Thomson (1990) and depend on the cor-
relation functions (Durbin, 1980).

The general equations of the model are:

dui (t) = ai (u, t)dt + δi j

√
C0εdWj (1)

dxi (t) = ui (t)dt (2)10

where i=1, ..,6 corresponding to the three coordinates for each of the particles of a
couple, C0 is the Kolmogorov constant, ε the dissipation rate of the turbulent kinetic
energy, dWj is a Gaussian white noise and

ai (u, t) =
σ2

TL
V −1
i j uj +

1
2
V −1
l j

∂Vi l
∂xk

ujuk (3)

where σ is the turbulent velocity field standard deviation, TL is the Lagrangian time15

scale and V is

V = 〈uiuj 〉 =
(
〈u(1)

i ′ u
(1)
j ′ 〉 〈u

(1)
i ′ u

(2)
j ′′ 〉

〈u(2)
i ′′ u

(1)
j ′ 〉 〈u

(2)
i ′′ u

(2)
j ′′ 〉

)
(4)

where 1, 2 indicate the particle (i ′, j ′, i ′′, j ′′=1,2,3).
Following Thomson (1990), we introduce the new coordinates: separation and the
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barycentre, 
∆ =

x
(1) − x

(2)

√
2

Σ =
x

(1) + x
(2)

√
2

(5)

Equations (1) can be replaced by the Langevin equations for the separation and
barycentre velocities, which can be found by solving the corresponding Fokker-Planck
equation. With the aim of assessing the possibility to use simplified versions of the
complete 3-D model in simulating relative dispersion we derived the 1-D and 2-D solu-
tion. In the 1-D case (Ferrero and Mortarini, 2005) we have:5

du∆ = −1
2

(
C0ε

σ2
+

df
d∆

u∆

)
u∆dt

(1 − f (∆))
+
√
C0εdW (6)

duΣ = −1
2

(
C0ε

σ2
− df

d∆
u∆

)
uΣdt

(1 + f (∆))
+
√
C0εdW (7)

where f (∆) is the longitudinal velocity correlation function which is prescribed as in
Thomson (1990).10

It can be noted that only the equation for u∆ (6) accounts for the particle–particle
interaction (u∆u∆=

1
2 (u2

1 − 2u1u2 + u2
2)). On the contrary the non linear term in the uΣ

Eq. (7) does not depend on this effect (uΣuΣ=
1
2 (u2

1 −u2
2)). As a matter of fact, Thomson

(1990) has pointed out that the model does not satisfy the “reduction to one particle”
condition: fixing the initial position of the first particle of a pair, the ensemble of the15

trajectories of this particle does not depend on the initial position of the second particle.
It should be also stressed that, in order to overcome the lack in simulating the molec-

ular diffusion which acts at the very small scale, the model requires a finite initial dis-
tance between the particles.
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3. Relative dispersion

In order to test the model, firstly we compared its results with the theoretical predictions
prescribed by Borgas and Sawford (1991). They proposed the following trend for the
particles separation mean square in a moving set of coordinates independent from the
initial velocity:5

< ∆2 >=

{
1
3C0εt

3 tη � t � t0
1
3 (C0 − γ)εt3 t0 � t � TL

(8)

where tη is the Kolmogorov length scale and t0 depends on the initial separation ∆0:

t0 = (∆2
0/ε)

1
3 . (9)

It represents the time at which the motion of the particles becomes independent from
the initial separation (Batchelor, 1952).10

The presence of the additional term γ is due to the cross-correlation terms in the
correlation tensor (4) (Borgas and Sawford, 1991), whose effect appears only for lager
separation.

Figure 1 shows the separation standard deviation as a function of time predicted by
the 3-D model compared with the theoretical prediction (8). It demonstrates the pres-15

ence of an intermediate sub-range inside the inertial range, whose amplitude depends
on the initial separation of the particles. For time greater than t0 the separation mean
square grows with a different trend according to Eqs. (8).

This behavior can be interpreted as follows. Immediately after the release (t�t0)
the separation of the particles induced by the turbulent eddies is less than the initial20

separation (∆0) of the particles of the pair. Only when the separation becomes greater
(t > t0) the effect of the particle correlation can be observed. For great initial separation
the particles are already uncorrelated at the beginning of the simulation and hence
follow the single particle dynamics.
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A similar formula can be derived for the barycentre’s mean square:

< Σ2 >=

{
1
3C0εt

3 tη � t � t0
1
3 (C0 + γ)εt3 t0 � t � TL

(10)

The comparison between theoretical prediction (10) and the 3-D model results is shown
in Fig. 2.

As it can be seen, the barycentre is insensitive to the particle-particle interaction and5

it follows the same trend in all the inertial range.
The different behaviour of separation and barycentre makes the model not com-

pletely satisfactory because it does not satisfy the “reduction to one particle” criteria
(Thomson, 1990).

While the single particle position and barycentre PDF’s are generally accepted to10

be Gaussian, there is no definitive theory on the shape of the separation PDF within
the inertial subrange. Richardson (1926) proposed a form for the pair separation PDF,
whose one-dimensional expression is:

P (∆|x, t) = 9

4
√
π

(ηt)−3/2e− 9∆−3/2

4ηt (11)

where η depends on the Richardson constant g and on the rate of dissipation of turbu-15

lent kinetic energy ε through the relation: η=(243
560gε)1/3.

A different form of the PDF was suggested by Thomson (1990) following (Monin and
Yaglom, 1975, p. 384) characterized by a less sharp maximum and small tails:

P (∆|x, t) ' α − β∆2/3 (12)

where α is the variance of the hypothetical concentration field and β is proportional to20

its rate of dissipation (Thomson, 1990). This approximated expression should fit the
PDF only for small separations in the inertial subrange.

The separation PDFs in the intermediate range t0�t�TL for the 1-D, 2-D and 3-D
cases are shown in Fig. 3. The PDF produced by the 1-D model has a more sharp

3627

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/5/3621/acpd-5-3621_p.pdf
http://www.atmos-chem-phys.org/acpd/5/3621/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
5, 3621–3639, 2005

A Lagrangian
Stochastic Model for

the concentration
fluctuations

L. Mortarini and
E. Ferrero

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

maximum and agrees better with the Richardson PDF. In the 2-D and 3-D cases the
PDFs show a smoother maxima but still they are not Gaussian. Thus the 2-D and 3-D
models are not able to predict very small particle separations.

For time smaller than t0 the PDF can be considered Gaussian. This result agrees
with the theoretical predictions by Batchelor (1952) and Richardson (1926).5

We found that the separation PDF is Gaussian at small times, for t�t0 and outside
the inertial subrange (t�TL), but it departs from Gaussianity in the intermediate sub-
range (t0�t�TL). In this range the PDF agrees, at least for small separation, with
those proposed by Thomson (Eq. 12) (Thomson, 1990; Monin and Yaglom, 1975). In
the case of the 1-D model it agrees with the Richardson PDF (Eq. 11), (Ferrero and10

Mortarini, 2005).

4. Concentrations

We have shown that the PDF of the separation is not the same along all the inertial
range, so using the Gaussian PDF for calculating the concentration and the concen-
tration fluctuations can not always be correct. We derived a new formula based on the15

Richardson PDF and we compared this formula with that proposed by Thomson (1990)
based on the Gaussian PDF.

The mean concentrations and the concentration fluctuations predicted by the model
are compared with the analytical formulas based on the single particle (P1(y, s|x, t))
and two particles separation (P2(y1, y2, s, s|x1, x2, t, t)) PDFs, respectively.20

In order to calculate the mean concentrations and concentration fluctuations we
adopted the Sawford (1993) approximation, obtaining the following expressions

〈C(x, t)〉 =
∫

1
√

2πσ1(s|t)
e
− (x−y)2

2σ2
1

(s|t)S(y)dy (13)
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〈C2(x, t)〉 =
∫
P (∆, s|t) 1

√
2πσΣ(s|t)

e
− (x

√
2−Σ)2

2σ2
Σ

(s|t)

S(y1)S(y2)dy1dy2 (14)

where S(y) is the amount of tracer released per unit volume, P (∆, s|t) the separation
PDF, σ1 is the single particle position standard deviation and σΣ is the barycentre stan-5

dard deviation.
For the sake of simplicity, we consider a discrete Gaussian area source (where σ0

represents the source size):

S(y) =
1

√
2πσ0

e
− y2

2σ2
0 , (15)

which gives the following expressions for the mean concentration:10

〈C(x, t)〉 = 1√
2π(σ2

1 (s|t) + σ2
0 )
e
− x2

2(σ2
1

(s|t)+σ2
0

) (16)

Concerning the mean concentration fluctuations we derived the following expression:

〈C2(x, t)〉 = A(η, σ0, t)
3e

− x2

σ2
Σ

(t)+σ2
0

2625/6π2
√
t7η(σ2

Σ(t) + σ2
0 )

(17)

Mean concentrations predicted by the models for an area source were calculated
and compared with the predictions based on the Gaussian PDF (Eq. 16) see Fig. 4.15

The results obtained with all the three models agree with the theoretical predictions. It
can also be observed that the mean concentrations corresponding to the three models
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follow the same behavior and, after about 0.1 integral time scale (σ2/ε), the predic-
tions, for sources with different size, collapse on the same curve. This demonstrates
that the characteristics of the source influence the dispersion only at the shortest times.

Concerning the concentration fluctuation, the 1-D, 2-D and 3-D models give different
results, according to the different shapes of the separation PDF. In Fig. 5 the model5

results are compared with the theoretical predictions obtained from Eq. (17) and those
from the analogous formula based on the Gaussian PDF (Thomson, 1990). The curve
corresponding to Eq. (17) slightly differs in the cases of 1-D, 2-D and 3-D models. As
a matter of fact the value of η depends on which of the models is considered. As long
as the differences are not significative, in Fig. 5 we only plot the curve corresponding10

to the 1-D model.
In the 1-D case the calculated values agree with the theoretical prediction based on

the Richardson PDF, while the 2-D and 3-D models show small differences from the
Gaussian behavior only at shorter times (more pronounced for the 2-D model).

A comparison of the model results with measured data is shown in Fig. 6. The ex-15

periment was conducted in a wind tunnel by Fackrell and Robins (1982). A continuous
line source is compared with an instantaneous area source, so in the 1-D case two
coupled equations were considered.

The results show that concentration fluctuations predicted by the three models are
different and depend on the separation PDF. It can be observed that the highest values20

are predicted by the 1-D model while the 3-D model gives the lowest concentration
fluctuations.

It should be stressed that the results depend on the choice of the constant C0, in
the simulation here presented we set C0=4. However, a higher value of <C2> can be
obtained by decreasing this value.25
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5. Conclusions

In this paper we show the results obtained by using a Lagrangian Stochastic Model
for the particle pairs dispersion, developed following Thomson (1990). The compar-
ison of the separation and barycentre mean squares with the theoretical behaviour,
agrees with the Richardson t3-law and furthermore seems to confirm the presence of5

the intermediate subrange for t0�t�TL, where t0 is determined by the particles initial
separation as suggested by Batchelor (1952) and Borgas and Sawford (1991). Even
with the 3-D model the barycentre mean square trend does not agree with the theo-
retical prediction, Eq. (10), as shown in the 1-D case by Ferrero and Mortarini (2005),
confirming the different role played by the non linear terms in the two Langevin equa-10

tions.
Regarding the PDF of the separation we found that for t�t0 and t�TL it is Gaussian,

confirming the (Batchelor, 1952) results, while in the intermediate subrange (t0�t�TL)
it departs from the Gaussian distribution. The 1-D model gives a Richardson PDF for
the separation in the intermediate range (Ferrero and Mortarini, 2005), while in the15

case of the 2-D and 3-D models the separation PDF shows a less sharp maximum re-
producing the asymptotic behavior for small separation suggested by Thomson (1990).

The different separation PDFs provide different concentration fluctuations and the
Gaussian approximation seems to be not applicable particularly at the short times.
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Fig. 1. ∆ Separation’s mean square vs normalised time. Solid line: model; dashed line: first of equations (8); dash-dotted line: second of
equations (8)

A similar formula can be derived for the barycentre’s mean
square:

< Σ2 >=

{
1
3C0εt

3 tη << t << t0
1
3 (C0 + γ)εt3 t0 << t << TL

(10)

The comparison between theoretical prediction (10) and
model results is shown in figure 2.

figure
As it can be seen, the barycentre is insensitive to the

particle–particle interaction and it follows the same trend in
all the inertial range.

The different behaviour of separation and barycentre
makes the model not completely satisfactory because it does
not satisfy the reduction to one particle criteria (Thomson,
1990).

While the single particle position and barycentre PDF’s
are generally accepted to be Gaussian, there is no definitive
theory on the shape of the separation PDF within the inertial
subrange. Richardson (1926) proposed a form for the pair
separation PDF, whose one–dimensional expression is:

P (∆|x, t) =
9

4
√

π
(ηt)−3/2e−

9∆−3/2
4ηt (11)

where η depends on the Richardson constant g and on the
rate of dissipation of turbulent kinetic energy ε through the
relation: η = (243

560gε)1/3.
A different form of the PDF was suggested by Thomson

(1990) following Monin and Yaglom (1975) (pag.384) char-
acterized by a less sharp maximum and small tails:

P (∆|x, t) ' α− β∆2/3 (12)

where α is the variance of the hypothetical concentration
field and β is proportional to its rate of dissipation (Thomson,

1990). This approximated expression should fit the PDF only
for small separations in the inertial subrange.

The separation PDFs in the intermediate range t0 <<
t << TL for the 1D, 2D and 3D cases are shown in fig-
ure 3. The PDF produced by the 1D model has a more sharp
maximum and agrees better with the Richardson PDF. In the
2D and 3D cases the PDFs show a smoother maxima but still
they are not Gaussian. Thus the 2D and 3D models are not
able to predict very small particle separations.

figure
For time smaller than t0 the PDF can be considered Gaus-

sian. This result agrees with the theoretical predictions by
Batchelor (1952) and Richardson (1926).

We found that the separation PDF is Gaussian at small
times, for t << t0 and outside the inertial subrange (t >>
TL), but it departs from Gaussianity in the intermediate sub-
range (t0 << t << TL). In this range the PDF agrees, at
least for small separation, with those proposed by Thomson
(equation 12) (Thomson (1990), Monin and Yaglom (1975)).
In the case of the 1D model it agrees with the Richardson
PDF (equation 11).

4 Concentrations

We have shown that the PDF of the separation is not the same
along all the inertial range, so using the Gaussian PDF for
calculating the concentration and the concentration fluctua-
tions can not always be correct. We derived a new formula
based on the Richardson PDF and we compared this formula
with that proposed by Thomson (1990) based on the Gaus-
sian PDF.

The mean concentrations and the concentration fluctua-
tions predicted by the model are compared with the analyti-
cal formulas based on the single particle (P1(y, s|x, t)) and

www.atmos-chem-phys.org/acp/0000/0001/ Atmos. Chem. Phys., 0000, 0001–8, 2005

Fig. 1. Separation’s standard deviation vs normalised time. Solid line: model; dashed line: first
of Eq. (8) square root; dash-dotted line: second of Eq. (8).
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4 L.Mortarini E.Ferrero: A Lagrangian Stochastic Model for the concentration fluctuations

Fig. 2. Σ Barycentre’s mean square vs normalised time. Solid line: model; dashed line: first of equations (10); dash-dotted line: second of
equations (10)

two particles separation (P2(y1, y2, s, s|x1, x2, t, t)) PDFs
respectively.

In order to calculate the mean concentrations and concen-
tration fluctuations we adopted the Sawford (1993) approxi-
mation, obtaining the following expressions

〈C(x, t)〉 =
∫

1√
2πσ1(s|t)

e
− (x−y)2

2σ2
1(s|t) S(y)dy (13)

〈C2(x, t)〉 =
∫

P (∆, s|t) 1√
2πσΣ(s|t)

e
− (x

√
2−Σ)2

2σ2
Σ(s|t)

S(y1)S(y2)dy1dy2

(14)

where S(y) is the amount of tracer released per unit volume
and P (∆, s|t) the separation PDF.

For the sake of simplicity, we consider a discrete Gaussian
area source:

S(y) =
1√

2πσ0

e
− y2

2σ2
0 , (15)

which gives the following expressions for the mean con-
centration:

〈C(x, t)〉 =
1√

2π(σ2
1(s|t) + σ2

0)
e
− x2

2(σ2
1(s|t)+σ2

0) (16)

figure
figure
Concerning the mean concentration fluctuations we de-

rived the following expression:

〈C2(x, t)〉 = A(η, σ0, t)
3e

− x2

σ2
Z

(t)+σ2
0

2625/6π2
√

t7η(σ2
Z(t) + σ2

0)
(17)

Mean concentrations predicted by the models for an area
source were calculated and compared with the predictions
based on the Gaussian PDF (equation 16) see 4. The results
obtained with all the three models agree with the theoretical
predictions. It can also be observed that the mean concen-
trations corresponding to the three models follow the same
behavior and, after about 0.1 integral time scale (σ2/ε), the
predictions, for sources with different size, collapse on the
same curve. This demonstrates that the characteristics of the
source influence the dispersion only at the shortest times.

Concerning the concentration fluctuation, the 1D, 2D and
3D models give different results, according to the differ-
ent shapes of the separation PDF. In figure 5 the model re-
sults are compared with the theoretical predictions obtained
from equation (17) and those from the corresponding formula
based on the Gaussian PDF (Thomson, 1990). The curve
corresponding to equation (17) slightly differs in the cases of
1D, 2D and 3D models. As a matter of fact the value of η
depends on which of the models is considered. As long as
the differences are not significative, in figure 5 we only plot
the curve corresponding to the 1D model.

In the 1D case the calculated values agree with the the-
oretical prediction based on the Richardson PDF, while the
2D and 3D models show small differences from the Gaus-
sian behavior only at shorter times (more pronounced for the
2D model).

A comparison of the model results with measured data is
shown in figure 6. The experiment was conducted in a wind
tunnel by Fackrell and Robins (1982). A continuous line
source is compared with an instantaneous area source, so in
the 1D case two coupled equations were considered.

The results show that concentration fluctuations predicted
by the three models are different and depend on the separa-
tion PDF. It can be observed that the highest values are pre-
dicted by the 1D model while the 3D model gives the lowest

Atmos. Chem. Phys., 0000, 0001–8, 2005 www.atmos-chem-phys.org/acp/0000/0001/

Fig. 2. Barycentre’s standard deviation vs normalised time. Solid line: model; dashed line: first
of Eq. (10) square root; dash-dotted line: second of Eq. (10).
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L.Mortarini E.Ferrero: A Lagrangian Stochastic Model for the concentration fluctuations 5

Fig. 3. P (∆, s|t) produced by the models (dots) in the intermediate range in the (from top) 1D, 2D and 3D cases. Dashed line: Gaussian;
dash-dotted line: Richardson; solid line: equation 12

www.atmos-chem-phys.org/acp/0000/0001/ Atmos. Chem. Phys., 0000, 0001–8, 2005

Fig. 3. P (∆, s|t) produced by the models (dots) in the intermediate range in the (from top) 1-D,
2-D and 3-D cases. Dashed line: Gaussian; dash-dotted line: Richardson; solid line: Eq. (12).
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6 L.Mortarini E.Ferrero: A Lagrangian Stochastic Model for the concentration fluctuations
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Fig. 4. Comparison between mean concentrations predicted by the 1D (4), 2D (×) and 3D (2) models and theoretical prediction (contonous
lines) for different source sizes, where the intial mean concentration is inversely proportional to the source size.
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Fig. 5. Comparison between concentration fluctuations predicted by the 1D (4), 2D (×) and 3D (2) models and theoretical prediction
(solid line) based on the Richardson (solid line) and Gaussian (dashed line) PDFs
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Fig. 4. Comparison between mean concentrations predicted by the 1-D (4), 2-D (×) and 3-D
(2) models and theoretical prediction (contonous lines) for different source sizes, where the
intial mean concentration is inversely proportional to the source size.
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Fig. 4. Comparison between mean concentrations predicted by the 1D (4), 2D (×) and 3D (2) models and theoretical prediction (contonous
lines) for different source sizes, where the intial mean concentration is inversely proportional to the source size.
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Fig. 5. Comparison between concentration fluctuations predicted by the 1D (4), 2D (×) and 3D (2) models and theoretical prediction
(solid line) based on the Richardson (solid line) and Gaussian (dashed line) PDFs
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Fig. 5. Comparison between concentration fluctuations predicted by the 1-D (4), 2-D (×) and
3-D (2) models and theoretical prediction (solid line) based on the Richardson (solid line) and
Gaussian (dashed line) PDFs.
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Fig. 6. Comparison between model simulations (lines) and experimental data (symbols) for different source sizes; a: 1D model, b: 2D model,
c: 3D model
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Fig. 6. Comparison between model simulations (lines) and experimental data (symbols) for
different source sizes; (a): 1-D model, (b): 2-D model, (c): 3-D model.
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